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ABSTRACT: This paper shows a new parameter adjustment law of PID controllers for MIMO linear system with 

guaranteed disturbance attenuation performance. In the proposed design approach, the design problem of PID 

parameters is reduced to the problem of static output feedback controllers for MIMO linear systems. In this paper, 

we show that sufficient conditions for the existence of the proposed PID control system can be reduced to 

solvability of linear matrix inequalities (LMIs). Finally, a simple numerical example is shown to effectiveness of 

the proposed PID control system.  
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INTRODUCTION 
 

It is well known that the PID control strategy has been widely used in various industrial/practical control systems, 

and it is one of the most famous classical feedback control strategies. In most of PID controller design problems, 

single-input/single-output models as the controlled system are considered. However, in practical applications, 

controlled systems are modeled as coupled multiple-input multiple-output (MIMO) high-order systems. 

Therefore, it is especially important to develop effective design methods for multivariable PID control systems 

for such MIMO high-order systems, and a lot of researchers have been proposed various design methods for 

multivariable PID controllers. There are two approaches for designing multivariable PID controllers; One 

approach is "frequency domain approach" which is based on generalized Nyquist stability theorem. However, the 

frequency domain approach is not convenient to work due to their complexity. The other one for designing 

multivariable PID control systems is "time-domain approach", some design methods have been presented. In the 

existing results for the time-domain approach, the PID controller design problem is transformed into the static 

output feedback control one, and sufficient conditions for the existence of the multivariable PID controller are 

described as linear matrix inequalities (LMIs). Additionally, there are some results for multivariable PID control 

systems with online adjustment laws for PID parameters. However, the existing result needs to satisfy ASPR 

(Almost Strictly Positive Real) characteristics, and thus the design procedure is complex.  

This paper proposes a new online-adjustment law for PID parameters which achieves disturbance attenuation 

performance for MIMO linear systems. In the proposed controller design approach, although the PID controller 

design problem is transformed into the static output feedback control one, ASPR characteristics does not 

introduced. We show that sufficient conditions for the existence of the proposed PID controllers can be reduced 
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to solvability of LMIs in this paper. Finally, to show the effectiveness of the proposed PID controller, a simple 

numerical example is included. 

This paper is organized as follows. Firstly, we describe the controlled system considered in this paper. Next, we 

show our main results. Finally, a simulation is shown to illustrate the effectiveness of the proposed control system. 

Here we show numerical symbols used in this paper. Throughout this paper, for a matrix 𝐴, 𝐴 < 0 (resp. 𝐴 > 0) 

means that A is negative definite (resp. positive-definite). 𝐴𝑇  and 𝐴−1  show its transpose and its inverse, 

respectively. Moreover, 𝑇𝑟{𝐴} and diag(𝐴1, 𝐴2, …, 𝐴𝑛) are trace of 𝐴 and the block diagonal matrix composed 

of matrices 𝐴1, 𝐴2, …, 𝐴𝑛. 𝐼𝑛 is 𝑛-th order identity matrix, for a vector 𝑎, ‖𝑎‖ denotes the standard Euclidian 

norm and for a matrix 𝐴, ‖𝐴‖ represents a its induced norm. 

 

 

PROBLEM FORMULATION 

 

Consider the MIMO linear system described by the following state equation: 
𝒅

𝒅𝒕
𝒙(𝒕) = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕) +  𝜞𝛚(𝐭),

𝒚(𝒕) = 𝑪𝒙(𝒕),
(1) 

where 𝑥(𝑡)  ∈  𝑹𝑛, 𝑢(𝑡)  ∈  𝑹𝑚,  𝑦(𝑡)  ∈  𝑹𝑙  are the state, the control input, and the measurement output, 

respectively. Moreover 𝜔(𝑡)  ∈  𝑹𝑝  is the disturbance input, and the matrices 𝐴 ∈  𝑹𝑛×𝑛, 𝐵 ∈  𝑹𝑛×𝑝,𝛤 ∈

 𝑹𝑛×𝑝, and 𝐶 ∈  𝑹𝑙×𝑛 represent the system parameters. For the MIMO linear system of (1), we define the 

following PID control law: 

𝑢(𝑡) =  𝐾𝑝𝑦(𝑡) +  𝐾𝑖 ∫ 𝑦
𝑡

0

(𝑡)𝑑𝑡 +  𝐾𝑑

𝑑

𝑑𝑡
𝑦(𝑡). (2) 

In (2), 𝐾𝑝  ∈  𝑹𝑚×𝑙，𝐾𝑖  ∈  𝑹𝑚×𝑙，𝐾𝑑  ∈  𝑹𝑚×𝑙  are the PID parameters. Note that use the derivative of the 

measurement output 𝒚(𝒕) is not desirable. Therefore, we introduce the following approximate derivative: 

𝑑

𝑑𝑡
𝑣(𝑡) =  −𝑇𝑣(𝑡) + 𝑇

𝑑

𝑑𝑡
𝑦(𝑡), (3) 

where 𝑇 ≜ 𝑑𝑖𝑎𝑔(1
𝜏1

⁄ , 1
𝜏2

⁄ , … , 1
𝜏𝑙

⁄ ) is a matrix, and 𝜏𝑘  ∈ 𝑹1 (𝑘 = 1, 2, … 𝑙) is a design parameter selected 

by designers. In this paper, by using the approximate derivative of (3), we consider the PID control law:  

𝑢(𝑡) =  𝐾𝑝(𝑡)𝑦(𝑡) +  𝐾𝑖(𝑡) ∫ 𝑦
𝑡

0

(𝑡)𝑑𝑡 + 𝐾𝑑(𝑡)𝑣(𝑡), (4) 

instead of the one of (2). 

Now by introducing two complementary variables 𝑧1(𝑡) and 𝑧2(𝑡) which are defined as 

𝑧1(𝑡) ≜ 𝑥(𝑡),

𝑧2(𝑡) ≜  ∫ 𝑦(𝑡)𝑑𝑡
𝑡

0

,
(5) 

the PID control law of (4) can be transformed into 

𝑢(𝑡) =  𝐾𝑝(𝑡)𝐶𝑧1(𝑡) + 𝐾𝑖(𝑡)𝑧2(𝑡)𝑑𝑡 + 𝐾𝑑(𝑡)𝑣(𝑡). (6) 

Next, we consider augmented vectors 𝑧𝜔(𝑡) =  (𝑧1
𝑇(𝑡), 𝑧2

𝑇 (𝑡), 𝑣𝑇(𝑡))𝑇  and 𝑦𝜔(𝑡) =  (𝑦𝑇(𝑡), 𝑧2
𝑇  (𝑡), 𝑣𝑇(𝑡))𝑇 , 

and then we have  
𝑑

𝑑𝑡
𝑧𝜔(𝑡) = 𝐴𝜔𝑧𝜔(𝑡) + 𝐵𝜔𝑢(𝑡) + 𝛤𝜔𝜔(𝑡),

𝑦𝜔(𝑡) = 𝐶𝜔𝑥(𝑡).
(7) 

In (7), 𝐴𝝎  ∈ 𝑹(𝑛+2𝑙)×(𝑛+2𝑙), 𝐵𝝎  ∈ 𝑹(𝑛+2𝑙)×𝑚, 𝛤𝝎  ∈ 𝑹(𝑛+2𝑙)×𝑝, and 𝐶𝝎  ∈ 𝑹3𝑙×(𝑛+2𝑙), are the matrices given 

as 

𝐴𝜔 =  (
𝐴, 0, 0,
𝐶, 0, 0,

𝑇𝐶𝐴 0, −𝑇
) , 𝐵𝝎 =  (

𝐵
0

𝑇𝐶𝐵
) , 𝛤𝝎 =  (

𝛤
0

𝑇𝐶𝛤
) , 𝐶𝝎 = 𝑑𝑖𝑎𝑔(𝐶, 𝐼𝑙 , 𝐼𝑙). (8) 



International Conference on New Trends in Applied Sciences (ICONTAS'23) 

  

81 

Then one can see that introducing the matrix 𝐾(𝑡) =  (𝐾𝑝(𝑡), 𝐾𝑖(𝑡), 𝐾𝑑(𝑡)) and some algebraic manipulations 

give  (6) as (9): 

𝑢(𝑡) = 𝐾(𝑡)𝐶𝜔𝑧𝜔(𝑡), (9) 

and the closed-loop system is given as 
𝒅

𝒅𝒕
𝒛𝝎(𝒕) = (𝑨𝝎 + 𝑩𝝎𝑲(𝒕)𝑪𝝎)𝒛𝝎(𝒕) + 𝜞𝝎𝝎(𝒕),

𝒚𝝎(𝒕) = 𝑪𝝎𝒛𝝎(𝒕).
(10) 

Now based on the existing results (e.g., Nagai et al., (2018). ]) we will give the definition of the PID control with 

guaranteed L2 gain performance 𝛾 < 0 for the augmented system of (7) and the control input of (9). 

 

Definition 1. For the augmented system of (7), the control input of (9) is said to be a PID control with guaranteed 

𝐿2 gain performance 𝛾 > 0 if the closed-loop system of (10) is internally stable and 𝐿2-norm of the closed-loop 

system transfer function from the disturbance input 𝑤(𝑡) to the controlled output 𝑦
𝜔

(𝑡) is less than or equal to a 

positive constant 𝛾 >  0.  

 

From the above, the design problem of the PID control law of (9) in this paper is reduced to one automatic 

adjustment laws for PID parameters with guaranteed disturbance attenuation performance of the expanded system 

of (7). 

 

AUTOMATIC ADJUSTMENT OF THE PID PARAMETERS 

To derive the automatic adjustment law of the PID parameters of  (9), we consider the following function 𝑉(𝑡): 

𝑉(𝑡) =  𝑧𝜔
𝑇 (𝑡)𝑃𝑧𝜔(𝑡) + 𝑇𝑟{(𝐾(𝑡) − 𝐹)𝑄−1(𝐾(𝑡) − 𝐹)𝑇}. (11) 

In (11), 𝑃 ∈ 𝑹(𝑛+2𝑙)×(𝑛+2𝑙)  is a positive-definite symmetric matrix, 𝐹 ∈ 𝑹𝑚×3𝑙  is a virtual matrix that is 

determined later, and 𝑄 ∈ 𝑹3𝑙×3𝑙 is a positive-definite weighting matrix selected by designers. Note that the 

virtual matrix 𝐹 is introduced to derive the automatic adjustment law of the PID parameter and it is not directly 

reflected in the automatic adjustment law of PID parameters. The time-derivative of 𝑉(𝑡) along the trajectory of 

the closed-loop system of (11) are given as 

𝑑

𝑑𝑡
𝑉(𝑡) =  𝑧𝜔

𝑇 (𝑡){𝑃(𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔) + (𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔)𝑇𝑃}𝑧𝜔(𝑡)       

+2𝑧𝜔
𝑇 (𝑡)𝑃𝐵𝜔(𝑘(𝑡) − 𝐹)𝐶𝜔𝑧𝜔(𝑡) + 2𝑧𝜔

𝑇 (𝑡)𝑃𝛤𝜔𝜔(𝑡)  

           + 𝑇𝑟 {(
𝑑

𝑑𝑡
𝐾(𝑡)) 𝑄−1(𝐾(𝑡) − 𝐹)𝑇} + 𝑇𝑟 {(𝐾(𝑡) − 𝐹)𝑄−1 (

𝑑

𝑑𝑡
𝐾(𝑡))

𝑇

} . (12)

 

Let us consider the second term for the right-hand side of (12). If there exists a matrix 𝛬 satisfying the relation 

𝐵𝜔
𝑇 𝑃 =  𝛬𝐶𝜔, (13) 

 then the time-derivative of 𝑉(𝑡) of (12) can be rewritten as 

𝑑

𝑑𝑡
𝑉(𝑡) =  𝑧𝜔

𝑇 (𝑡){𝑃(𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔) + (𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔)𝑇𝑃}𝑧𝜔(𝑡)       

+2𝑧𝜔
𝑇 (𝑡)𝐶𝜔

𝑇𝛬𝑇(𝑘(𝑡) − 𝐹)𝐶𝜔𝑧𝜔(𝑡) +  2𝑧𝜔
𝑇 (𝑡)𝑃𝛤𝜔𝜔(𝑡)  

           + 𝑇𝑟 {(
𝑑

𝑑𝑡
𝐾(𝑡)) 𝑄−1(𝐾(𝑡) − 𝐹)𝑇} + 𝑇𝑟 {(𝐾(𝑡) − 𝐹)𝑄−1 (

𝑑

𝑑𝑡
𝐾(𝑡))

𝑇

} . (14)

 

 

Therefore, if we select the adjustment law of 𝐾(𝑡)  ∈   𝑹𝑚×3𝑙  
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(
𝑑

𝑑𝑡
𝐾(𝑡))

𝑇

=  −𝑄𝐶𝜔𝑧𝜔(𝑡)𝑧𝜔
𝑇 (𝑡)𝐶𝜔

𝑇𝛬𝑇 , (15) 

 

then the time-derivative of 𝑉(𝑡) of (14) can be rewritten as 

𝑑

𝑑𝑡
𝑉(𝑡) =  𝑧𝜔

𝑇 (𝑡){𝑃(𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔) + (𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔)𝑇𝑃}𝑧𝜔(𝑡) +  2𝑧𝜔
𝑇 (𝑡)𝑃𝛤𝜔𝜔(𝑡). (16) 

 

Next, we introduce the following Hamiltonian so as to consider the disturbance attenuation performance: 

𝐻(𝑡) =  
𝑑

𝑑𝑡
𝑉(𝑡) + 𝑦𝜔

𝑇(𝑡)𝑦𝜔(𝑡) − 𝛾2𝜔𝑡(𝑡)𝜔(𝑡). (17) 

 

In (17), if the Hamiltonian satisfies the condition 𝐻(𝑡) < 0 , then it means that the relation ‖𝑦𝜔(𝑡)‖2 <
 𝛾2‖𝜔(𝑡)‖2  holds, i.e., the disturbance attenuation performance 𝛾 > 0  is guaranteed. Thus, we consider the 

relation 𝐻(𝑡) < 0. One can see from (14) that the condition 𝐻(𝑡) < 0 can be rewritten as 

(
𝑧𝜔(𝑡)

𝜔(𝑡)
)

𝑇

(
𝑃(𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔) + (𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔)𝑇𝑃 + 𝐶𝜔

𝑇𝐶𝜔 𝑃𝛤𝜔

𝑃𝛤𝜔 −𝛾2𝐼𝑝
) (

𝑧𝜔(𝑡)

𝜔(𝑡)
) < 0. (18) 

 

Therefore, the disturbance attenuation performance 𝛾  is guaranteed provided that the following condition is 

ensured: 

(
𝑃(𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔) + (𝐴𝜔 + 𝐵𝜔𝐹𝐶𝜔)𝑇𝑃 +  𝐶𝜔

𝑇𝐶𝜔 𝑃𝛤𝜔

𝑃𝛤𝜔 −𝛾2𝐼𝑝
) < 0. (19) 

 

Moreover, by replacing 𝛾∗ ≜  𝛾2, the inequality of (19) is reduced to 

(
𝑷(𝑨𝝎 + 𝑩𝝎𝑭𝑪𝝎) + (𝑨𝝎 + 𝑩𝝎𝑭𝑪𝝎)𝑻𝑷 + 𝑪𝝎

𝑻 𝑪𝝎 𝑷𝜞𝝎

𝑷𝜞𝝎 −𝜸∗𝑰𝒑
) < 𝟎. (𝟐𝟎) 

 

As a result, we obtain the following theorem for the proposed PID control system: 

Theorem 1. Consider the augmented system of (7). If there exist a positive definite symmetric matrix 𝑃 ∈

𝑹(𝑛+2𝑙)×(𝑛+2𝑙), a virtual matrix 𝐹 ∈ 𝑹𝑚×3𝑙 and a positive constant 𝛾∗ which satisfy the matrix inequality  

(20), the adjustment law of PID parameter is determined as (15) and the internal stability of the closed-loop 

system and disturbance attenuation performance of 𝛾 (=  √𝛾∗) is guaranteed. 

 

 Remark 1. The inequality condition of (20) isn’t an LMI. In this paper, we adopt the design method of static 

output feedback controller presented in Benton et al., (1999). Namely, by using the design procedure 

shown in it, a positive definite symmetric matrix 𝑃 ∈ 𝑹(𝑛+2𝑙)×(𝑛+2𝑙), a virtual matrix 𝐹 ∈ 𝑹𝑚×3𝑙 and a 

positive constant 𝛾∗ which satisfy the matrix inequality  (20) are derived. 
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                      Figure 1 : time response of the output                         Figure 4 : time response of the 𝐾𝑝(𝑡) 

 
                       Figure 2 : time response of the input                         Figure 5 : time response of the 𝐾𝑖(𝑡) 

 

                      Figure 3 : time response of the state                       Figure 6 : the time response of the 𝐾𝑑(𝑡) 

 

NUMERICAL SIMULATION  
 

In order to demonstrate the proposed control system, a simple numerical simulation is run. In this numerical 

example, we consider a MIMO system described as 
𝑑

𝑑𝑡
𝑥(𝑡) = (

0.1 1.0
0.0 2.0

) 𝑥(𝑡) + (
1.0
1.0

) 𝑢(𝑡) + (
0.10
0.25

) ω(t).

𝑦(𝑡) = (1.0 1.0)𝑥(𝑡),
 

Moreover, we set the parameter 𝜏1 as 10 for the approximate derivative of (3), and the design parameter 𝑄 is 

selected as  𝑄 = 𝐼3. Additionally, initial values are set as 𝑣(0) = 0, 𝐾𝑝(0) =  𝐾𝑖(0) =  𝐾𝑑(0) = 0 and 𝑥(0) =
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 (𝑥1(0), 𝑥2(0))𝑇  =  (1, 0)𝑇, respectively. Then, we simulate two patterns; (1) the disturbance is given by ω(t) =
2cos (2𝜋𝑡)𝑒−0.001𝑡 and (2) no disturbances.  

By using the Benton et al., 1999, the following matrices and a scalar  𝛾∗ which satisfy the conditions of (13), 

and (20) are derived, 

 

𝐹 =  (2556.823 −2153.270 −9.624), 𝛬 =  (2.655 2.236 0.010),  

𝑃 =  (
2.701 0.453 0.779
0.453 2.699 1.501
0.779 1.501 5.861

) ,    𝛾∗ = 4.279(𝛾 = 2.069). 

 

The figures 1-6 are the time-histories of the numerical simulation. We find that he PID parameter 𝐾𝑝(𝑡), 𝐾𝑖(𝑡) 

and  𝐾𝑑(𝑡) are adjusted automatically, and the closed-loop system is asymptotically stable. 

 

CONCLUSION 
 

In this paper, we have shown a new automatic adjustment law of the PID parameters with disturbance attenuation 

performance for Multiple-Input Multiple-Output linear systems. The sufficient conditions for the existence of the 

PID control system which has the disturbance attenuation performance can be reduced to the condition of the 

matrix inequality. Furthermore, the effectiveness of the proposed PID control system has been presented through 

a simple numerical example.  

 The future research subjects are establishing much appropriate derivation method of the matrix Λ, and extension 

of the proposed design approach for PID control systems to I-PD control strategy. 
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