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ABSTRACT: The huge increase in energy consumption in recent decades, has made it cumbersome to 

anticipate energy usage in the residential sector. However, despite substantial advancements in computation and 

simulation, the modelling of residential building energy use is still in need of improvement for efficient and 

reliable solutions. To this end, the overarching objective of this research study is to construct a self-adaptive 

model (HBO-DL) for predicting the amounts of heating and cooling loads in residential buildings. The 

developed HBO-DL model is envisioned on coupling Bayesian optimization with deep learning neural network. 

Five statistical metrics of mean absolute percentage error (MAPE), root mean squared error (RMSE), root mean 

squared logarithmic error (RMSLE), mean absolute error (MAE) and normalized root mean squared error 

(NRMSE), are leveraged to measure and test the accuracies of the developed HBO-DL. Analytical results 

explicated that the developed HBO-DL model can endorse informed decision-making and foster energy 

conservation in built environment.    
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INTRODUCTION 
 

The economic growth of any country is highly influenced by the amount of reduced energy consumption in its 

buildings (Liu et al., 2021). The buildings are responsible for 46%, 40%, and 27% of the total carbon dioxide 

emissions in the United Kingdom, United States and Australia, respectively (Kelly et al., 2012; Filippı́n, 2020.) 

The energy demand of both residential and commercial buildings accounts for 40% of the total energy demand 

in the United States and the European Union. However, this percentage is only 30% in China, with 63% of it 

consumed in heating and cooling purposes (Huebner et al., 2015). It is estimated that a 20% improvement of the 

buildings’ energy performance in the European Union will lead to an annual saving of 60 billion Euros (Li et al., 
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2010). Mitigating the buildings’ emissions and energy consumption requires an alteration in human behavior, 

application of environmentally friendly products, and controlling the root causes of these emissions. Therefore, 

construction of energy-efficient buildings and improvement of energy usage in existing buildings act as great 

moves to reduce global warming (Seyedzadeh et al., 2018). Accordingly, several efforts have been exerted by 

researchers to predict the building energy consumption (Cuce et al., 2015). The energy performance indicator or 

energy use intensity of any building is measured by kWh/m2/time period (Hong et al., 2015; Nikolaou et al., 

2015). The obstacles in predicting the building energy consumption are listed as follows: a) determining the 

most accurate and convenient approach, and b) recommending the most suitable model in different cases. It 

shall be noted that it is crucial to compromise between the accuracy and computational time of the prediction 

approaches (Liu et al., 2019). Hence, the ultimate objective of this study is to create a self-tuning deep learning-

based model for accurate forecasting of heating and cooling loads in residential buildings. 

LITERATURE REVIEW 

The assessment of building energy could be categorized into four classes namely, engineering methods, 

simulation models, statistical models, and machine learning models [6]. Most of the research efforts utilized 

statistical methods while only rare studies applied machine learning in the performance evaluation (Liu et al., 

2019). The engineering methods comprise applying mathematics or dynamics for deriving the energy usage of 

building components. The simulation models involve the application of computer software models for 

simulating the performance of buildings. The statistical methods aim at finding a relationship between the 

output (i.e. energy consumption) and the influencing input parameters using historical data. However, the main 

drawbacks of these approaches are reliance on high-quality historical data and large computer memory as well 

as consuming a long time and producing inaccurate and insignificant results. The machine learning method was 

developed to overcome the limitations of the statistical methods (Liu et al., 2019; Seyedzadeh et al., 2018). The 

objective of machine learning is forecasting the output(s) without evolving strict or complex conditions 

(Samuel, 1967). The machine learning models have been applied in wide research areas. However, their 

utilization in the energy consumption field is still in an infancy stage (Liu et al., 2019) 

The machine learning models can also act as alternatives for traditional building energy rating schemes because 

they extract the underlying patterns in various features of building data sets, which can be used for classifying 

the buildings and estimating their ratings (Deb et al., 2016). A significant amount of energy data has been 

produced recently due to a rise in interest in building energy use, claimed by Wei et al. (2018), which 

strengthens the data-driven algorithms for widespread use in the construction industry. This article examines the 

prevalent data-driven techniques used in building energy analysis across a range of archetypes and granularities. 

These techniques include prediction techniques like artificial neural networks and support vector machines as 

well as classification techniques like K-mean clustering, self-organizing maps, and hierarchy clustering. The 

review's findings show that data-driven approaches have successfully addressed a wide range of applications 

related to building energy, including load forecasting and prediction, energy pattern profiling, mapping regional 

energy consumption, benchmarking for building stocks, global retrofit strategies, and developing guidelines, 

among others. Importantly, this review clarifies a few crucial responsibilities for changing data-driven 

methodologies when used to building energy analysis. Through the proper refit and the addition of renewable 

energy technology, the findings of this review may help future micro-scale changes in the energy use of a 

specific building. Additionally, it opens up a path for investigating the potential of large-scale energy reduction 

while taking customer demands into account. All of these will be helpful in developing a more effective long-

term plan for urban sustainability. 

For example, Alawadi et al. (2022) examined and compared the application of 36 different machine learning 

models to forecast the hourly indoor temperature of a smart building. The data was acquired from sensors linked 

to the HVAC system (i.e. underfloor heating status, underfloor heating temperature, air condition status, air 

conditioning temperature, air conditioning humidity, indoor temperature, and previous indoor temperature) and 

the nearest weather station (i.e. humidity, temperature, and solar radiation). Results showed that the Extra Trees 

algorithm performed better in terms of the correlation coefficient and root mean square error. Besides, it ranked 

first according to Friedman’s statistical test. Besides, this algorithm was proved to be less sensitive to outliers 

and noise data. Its performance was also not affected by increasing the forecasting period. Therefore, the 

application of a standard machine learning algorithm was found to be successful in forecasting the indoor 

temperature of smart buildings. Moayedi et al. (2020) proposed a hybrid artificial intelligence model to predict 

the cooling loads in residential buildings. The input parameters comprised the relative compactness, surface 

area, roof area, wall area, glazing area, glazing area distribution, orientation, and overall height. The model 

optimized the multi-Layer Perceptron (MLP) using three metaheuristic algorithms namely; Elephant Herding 

Optimization (EHO), Ant Colony Optimization (ACO), and Harris Hawks Optimization (HHO). The results 
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revealed that the EHO-MLP model yielded the highest accuracy and required the least computational time, 

followed by the HHO-MLP and ACO-MLP.  

Liu et al. (2020) forecasted the energy consumption in an office building using three Deep Reinforcement 

Learning (DRL) techniques which are; Asynchronous Advantage Actor-Critic (A3C), Deep Deterministic 

Policy Gradient (DDPG), and Recurrent Deterministic Policy Gradient (RDPG). These DRL techniques were 

compared against three common supervised machine learning models (i.e. multiple linear regression, 

backpropagation neural networks, and random forest) in terms of the convergence speed, computation time, and 

prediction accuracy. The model accounted for the historical energy consumption data, system status, and 

meteorological data including wind speed, outdoor temperature, and wind speed. It was found that the DDPG 

and RDPG techniques improved the prediction accuracy while requiring more computation time. On the other 

side, the A3C technique was proved to be the most efficient technique despite reducing the prediction accuracy.  

Zekić-Sušac et al. (2021) incorporated the concepts of big data and machine learning for managing the energy 

efficiency of public buildings. The prediction models were developed using deep neural networks, RPART 

regression tree, and random forest algorithms. The random forest algorithm was found to be the most accurate 

model.  

Moon et al. (2020) forecasted the building electricity consumption in a typical office building using a stacking 

ensemble approach. The model accounted for the weather factors including the wind speed, temperature, and 

humidity as well as the time series data and historical electric load data. Various deep neural networks with 

different numbers of hidden layers and sliding window-based principal component regression were constructed 

to forecast the building's electric energy consumption. The proposed model was verified against actual electric 

energy consumption data using the mean absolute percentage error and mean absolute error. Results yielded that 

the proposed model boosted the prediction performance of building electric energy consumption. Zeng et al. 

(2020) predicted the electricity usage of six different commercial buildings using a Gaussian process regression 

method. The model accounted for the occupancy schedule and weather conditions (i.e. enthalpy, dry-bulb 

temperature, and wet-bulb temperature). The significance of these input parameters was affirmed by conducting 

a correlation analysis with the building’s energy use. The prediction results were compared against the real 

electricity consumption in these buildings using RMSE and Normalized Mean Bias Error (NMBE). It was 

observed that the proposed model improved the prediction accuracy and reduced the computational time for 

forecasting building electricity use.  

Walker et al. (2020) evaluated the hourly electricity demand in commercial buildings at an individual level and 

an aggregated level by applying many machine learning models. These models include the boosted-tree, random 

forest, SVM-linear, quadratic, cubic, fine-Gaussian, and ANN models. The models accounted for weather-

related factors (i.e. outdoor temperature, dry bulb temperature, and relative humidity), categorical factors (i.e. 

day of the week, hour of the day, month of the year, and seasons), intervention event (i.e. working day), energy 

consumption related autoregressive parameters (i.e. energy consumption of the previous day and energy 

consumption of the previous week). Results revealed that the ANN, boosted-tree, and random forest provided 

the best results when compared to other models in terms of computational time and error accuracy. Marzouk and 

Mohammed Abdelkader (2020) introduced a fuzzy-based model for optimizing sustainability related impacts of 

construction operations. In their model, a multi-objective optimization model was formulated based on 

minimizing project time, cost, environmental impact and energy consumption. A multi-criteria decision making 

model was then created to reap the best design alternative among the Pareto optimal solutions.  

MODEL DEVELOPMENT 

The primary objective of this study is to construct an efficient hybrid Bayesian optimization-based deep learning 

model for projecting heating and cooling loads in residential buildings. The dataset used herein, relies on the 

published work by Tsanas and Xifara (2012). In their dataset, 768 simulation records were produced based on 

spatial varying characteristics of the buildings. Ecotect energy analysis software was then harnessed in their 

study to compute heating and cooling loads for each combination of building characteristics. In their energy 

efficiency dataset, the amounts of heating and cooling loads were determined based on the input features of 

glazing area distribution, glazing area, overall height, orientation, surface area, wall area, roof area and relative 

compactness. The possible scenarios of glazing area distribution, glazing area, overall height, orientation, 

surface area, wall area, roof area and relative compactness are 4, 6, 2, 4, 12, 7, 4 and 12, respectively. The 
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(b) LSTM  

developed hybrid model capitalizes on the amalgamation of Bayesian optimization (BO) and deep learning 

neural network (DL) for predicting the amounts of heating and cooling loads in residential buildings. In the 

recent few years, optimization algorithms evinced their effectiveness in amplifying the training mechanism of 

machine learning models (Dong et al., 2022; Ly et al., 2022; Mohammed Abdelkader et al., 2020). In this 

respect, Bayesian optimization is leveraged for two vital reasons: 1) automated optimization of hyper parameters 

of deep learning neural network, and 2) autonomous identification of the influential input features. It is 

noteworthy pointing out that the developed model is characterized by its self-adaptive nature. Hence, different 

optimum architectures are triggered by the inputs and outputs present in the dataset. Thus, an optimum 

architecture of deep learning neural network is appended for each type of load prediction. The developed HBO-

DL model is tested against the classical data-driven models of support vector machines (SVM), generalized 

regression neural network (GRNN), cascade forward neural network (CFNN), back-propagation artificial neural 

network (BPANN), long short-term memory network (LSTM) and regression tree (RTREE). The performance 

evaluation is measured stepping on the renowned statistical metrics of mean absolute percentage error, root 

mean squared error, root mean squared logarithmic error, mean absolute error and normalized root mean 

squared error (Alshami et al., 2023; Elshaboury et al., 2021; Saleh et al., 2017).      

MODEL IMPLEMENTATION  

The energy efficiency dataset comprises 768 records such that 80 % (614) and 20% (154) are used for training 

and testing purposes, respectively. In predicting heating loads, the optimum architecture of the developed HBO-

DL model is composed of five convolutional blocks with two, one, four, three and four fully connected layers. 

Each one of them is composed of five hidden neurons, and Swish is deemed as the optimum transfer function. 

The optimum epoch number, initial learning rate, momentum coefficient, L2 Regularization and minimum batch 

size are equal to 141, 6.1×10-4, 0.8423, 1.51×10-4 and 134, respectively. The most influential factors affecting 

heating loads are relative compactness, surface area, wall area, overall height, orientation and glazing area. As 

for predicting cooling loads, the optimum structure of the developed HBO-DL model encompasses five 

convolutional blocks. Each of which involves two, one, four, four and three fully connected layers. These layers 

contain seven hidden neurons and rectified linear unit is the optimum activation function. Additionally, the 

optimum values of epoch number, initial learning rate, momentum coefficient, L2 Regularization and minimum 

batch size are 247, 5.66×10-3, 0.80252, 4×10-4 and 248, respectively. The most implicating building 

characteristics on cooling loads are surface area, overall height, orientation, glazing area and glazing area 

distribution.   

Figures 1 and 2 display the simulated and actual heating and cooling loads using the models of HBO-DL and 

LSTM. It can be noticed that the developed HBO-DL model was able to accurately the simulated heating and 

cooling loads. On the other hand, LSTM failed to emulate the heating and cooling loads. Figures 3 and 4 depict 

the error histograms of the developed HBO-DL and LSTM in forecasting heating and cooling loads. In heating 

loads, most of the error values achieved by the developed HBO-DL model ranged between 0.19 and 3.32 kW. 

As for LSTM, most of the error values were between 0.31 and 4.09 kW. In cooling loads, most of the error 

values of the developed model lied between 0.23 and 2.07 kW. With regards to LSTM, the largest portion of 

error values existed between 0.33 and 3.67 kW.     

 

 

 

 

 

 

Figure 1. Visual representation of the simulated and observed heating loads using the developed HBO-DL 

model and LSTM 
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(a) Developed HBO-DL  (b) LSTM  

 

 

 

 

 

 

Figure 2. Visual representation of the simulated and observed cooling loads using the developed HBO-DL 

model and LSTM 

 

 

 

 

 

   

Figure 3. Error histograms of the developed HBO-DL model and LSTM in predicting heating loads 

 

 

 

 

 

 

Figure 4. Error histograms of the developed HBO-DL model and LSTM in predicting cooling loads 

Tables 1 and 2 compile the test results of the investigated data-driven models in predicting heating and cooling 

loads. It can be inferred that the developed HBO-DL model outperformed the remainder of data-driven models 

accomplishing MAPE, RMSE, RMSLE, MAE and NRMSE of 5.73%, 1.39, 0.03, 1.35 and 0.05, respectively. 

On the contrary, LSTM obtained the highest MAPE (18.89%), RMSE (5.23), RMSLE (0.1) and MAE (4.59). In 

cooling loads, the developed HBO-DL model managed to notably perform better than other data-driven models 

yielding MAPE, RMSE, RMSLE, MAE and NRMSE of 6.81%, 2.79, 0.04, 1.95 and 0.09, respectively. The 

least prediction accuracies were associated with LSTM that sustained MAPE, RMSE, RMSLE, MAE and 

NRMSE of 15.73%, 4.88, 0.09, 4.06 and 0.17, respectively.    

 

 

 

 

(a) Developed HBO-DL  (b) LSTM  

(a) Developed HBO-DL (a) 

Developed HBO-DL  
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Table 1. Performance comparison between data-driven models in predicting heating loads 

Performance metrics HBO-DL SVM GRNN CFNN BPANN LSTM RTREE 

MAPE 5.73% 11.38% 10.09% 11.13% 13.60% 18.89% 8.71% 

RMSE 1.69 3.24 2.49 2.72 3.82 5.23 2.77 

RMSLE 0.03 0.05 0.06 0.06 0.07 0.1 0.04 

MAE 1.35 2.89 2.12 2.03 3.11 4.59 2.29 

NRMSE 0.05 0.09 0.07 0.07 0.17 0.16 0.09 

Table 2. Performance comparison between data-driven models in predicting cooling loads 

Performance metrics HBO-DL SVM GRNN CFNN BPANN LSTM RTREE 

MAPE 6.81% 8.88% 10.25% 9.36% 12.00% 15.73% 9.85% 

RMSE 2.79 3.18 4.65 3.17 4.82 4.88 3.17 

RMSLE 0.04 0.05 0.06 0.05 0.07 0.09 0.05 

MAE 1.95 2.28 3.14 2.34 3.31 4.06 2.62 

NRMSE 0.09 0.12 0.28 0.09 0.20 0.17 0.12 

CONCLUSION  

Building energy consumption prediction plays a significant role in enhancing energy utilization rate by assisting 

building managers in making better decisions. Accordingly, this study introduced a hybrid HBO-DL model for 

simulating heating and cooling loads in residential buildings. Analytical comparisons expounded that the 

developed model outranks six of the widely acknowledged data-driven models in forecasting both heating and 

cooling loads. For instance, the developed model was able to perform better than the widely used BPANN by 

60.7% and 46.2% in predicting heating and cooling loads, respectively. With that said, it can be argued that the 

developed model can furnish more sustainable building design designs and retrofitting 
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